更多>>精华博文推荐
更多>>人气最旺专家

钟蒨

领域:慧聪网

介绍:红豆国际美洲一部针织面料概述针织即利用织针将纱线弯曲成圈并相互串套而形成的织物。...

赵艳

领域:漳州新闻网

介绍:A.进入时间不同B.企业的最终产品或中间产品先在本国制造,然后输入目标国C.企业的最终产品或中间产品先在目标国制造,然后输本国D.企业的最终产品或中间产品在目标国制造、销售【参考答案】:B2.企业的核心竞争专长的定性评价指标不包括。w66利来国际手机app,w66利来国际手机app,w66利来国际手机app,w66利来国际手机app,w66利来国际手机app,w66利来国际手机app

利来国际手机版
本站新公告w66利来国际手机app,w66利来国际手机app,w66利来国际手机app,w66利来国际手机app,w66利来国际手机app,w66利来国际手机app
krs | 2019-01-21 | 阅读(477) | 评论(845)
书分卷,载药种,其中指明能够治疗痛症的药物近种,如“主中风人脑头痛”之芎,“主大风头眩痛骨节疼痹”之防风,治“头痛脑动,百节拘挛,风湿痹痛”之细辛,治“眼赤痛”之决明子,“温中下气止痛”之吴茱萸,治“肠澼腹痛下利”之黄连,“主气止痛”之车前子,主“女子阴中寒热痛”之卷柏,“主妇人阴中肿痛”之蛇床子,“主腰脊痛”之杜仲,“主寒湿痿痹四肢拘挛,膝痛不可屈伸”之牛膝,“排脓止痛”之黄芪,“主金创,止血逐痛”之王不留行,其止痛功效均屡用屡验,至今仍为临床所常用。【阅读全文】
w66利来国际手机app,w66利来国际手机app,w66利来国际手机app,w66利来国际手机app,w66利来国际手机app,w66利来国际手机app
kri | 2019-01-21 | 阅读(642) | 评论(408)
ChemicalLaboratory-Kao.,:KE/2018/12644Date:2018/2/5Page:,SHIHHUA1STRD.,LINYUANDISTRICT,KAOHSIUNGCITY832,TAIWAN()Thefollowingsample(s)was/weresubmittedandidentifiedby/onbehalfoftheclientas:SampleDescription:POLYPROPYLENEHOMOPOLYMERStyle/ItemNo.:1003,1005,1005N,1005T,1009,1020,1020L,1020T,1024,1024T,1030T,1040,1040F,1040U,1080,1100,1120,1120D,1124,1124H,1202F,1250D,1252F,1350D,1352F,1352S,1450D,1600A,1600D,1600N,1700D,1900D,1990,2020,2020H,2020S,2080,2100,2100M,2100T,6005P,:POLYPROPYLENEHOMOPOLYMERColor:CLEARSampleReceivingDate:2018/01/30TestingPeriod:2018/01/30TO2018/2/5SampleSubmittedBy:FORMOSAPLASTICSCORPORATION============================================================================================TestResult(s):Pleaserefertonextpage(s).Unlessotherwisestatedtheresultsshowninthistestreportreferonlytothesample(s),exceptinfull,【阅读全文】
ndu | 2019-01-21 | 阅读(494) | 评论(463)
第十六单元 认识社会与价值选择单元综合提升;复习点睛;网络构建;网络构建;1.从历史唯物主义角度,分析国家根据形势作出某项决策的原因(1)社会存在决定社会意识,社会存在的变化决定社会意识的变化。【阅读全文】
iua | 2019-01-21 | 阅读(447) | 评论(846)
习题课离散型随机变量的方差与标准差第2章 概率学习目标1.进一步理解离散型随机变量的方差的概念.2.熟练应用公式及性质求随机变量的方差.3.体会均值和方差在决策中的应用.题型探究知识梳理内容索引当堂训练知识梳理1.方差、标准差的定义及方差的性质(1)方差及标准差的定义:设离散型随机变量X的概率分布为Xx1x2…xi…xnPp1p2…pi…pn①方差V(X)=(x1-μ)2p1+(x2-μ)2p2+…+(xn-μ)2pn.(其中μ=E(X))②标准差为.(2)方差的性质:V(aX+b)=.a2V(X)2.两个常见分布的方差(1)两点分布:若X~0-1分布,则V(X)=;(2)二项分布:若X~B(n,p),则V(X)=.p(1-p)np(1-p)题型探究例1 一出租车司机从某饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率是(1)求这位司机遇到红灯数ξ的均值与方差;解 易知司机遇上红灯次数ξ服从二项分布,解答类型一 二项分布的方差问题(2)若遇上红灯,则需等待30s,求司机总共等待时间η的均值与方差.解 由已知η=30ξ,故E(η)=30E(ξ)=60,V(η)=900V(ξ)=1200.解答解决此类问题的第一步是判断随机变量服从什么分布,第二步代入相应的公式求解.若它服从两点分布,则方差为p(1-p);若它服从二项发布,则方差为np(1-p).反思与感悟跟踪训练1 在某地举办的射击比赛中,规定每位射手射击10次,每次一发.记分的规则为:击中目标一次得3分;未击中目标得0分;并且凡参赛的射手一律另加2分.已知射手小李击中目标的概率为,求小李在比赛中得分的均值与方差.解 用ξ表示小李击中目标的次数,η表示他的得分,则由题意知ξ~B(10,),η=3ξ+2.因为E(ξ)=10×=8,V(ξ)=10××=,所以E(η)=E(3ξ+2)=3E(ξ)+2=3×8+2=26,V(η)=V(3ξ+2)=32×V(ξ)=9×=解答例2 某投资公司在2017年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率为项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.类型二 均值、方差在决策中的应用解答解 若按项目一投资,设获利X1万元,则X1的概率分布如下表:=35000,若按项目二投资,设获利X2万元,则X2的概率分布如下表:∴E(X1)=E(X2),V(X1)<V(X2),这说明虽然项目一、项目二获利相等,但项目一更稳妥.综上所述,建议该投资公司选择项目一投资.离散型随机变量的均值反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此在实际决策问题中,需先运算均值,看一下谁的平均水平高,然后再计算方差,分析一下谁的水平发挥相对稳定,当然不同的模型要求不同,应视情况而定.反思与感悟跟踪训练2 已知甲、乙两名射手在每次射击中击中的环数均大于6,且甲射中10,9,8,7环的概率分别为,3a,a,,乙射中10,9,8环的概率分别为,,记甲射中的环数为ξ,乙射中的环数为η.(1)求ξ,η的概率分布;解答解 依据题意知,+3a+a+=1,解得a=∵乙射中10,9,8环的概率分别为,,,∴乙射中7环的概率为1-(++)=∴ξ,η的概率分布分别为ξη(2)求ξ,η的均值与方差,并以此比较甲、乙的射击技术.解 结合(1)中ξ,η的概率分布,可得E(ξ)=10×+9×+8×+7×=,E(η)=10×+9×+8×+7×=,V(ξ)=(10-)2×+(9-)2×+(8-)2×+(7-)2×=,V(η)=(10-)2×+(9-)2×+(8-)2×+(7-8【阅读全文】
sgc | 2019-01-21 | 阅读(961) | 评论(251)
A.信用信息共享平台B.公共服务平台C.行政监督平台D.公共资源平台2.在国家发展改革委办公厅关于切实用好全国公共资源交易平台的通知中,电子招标投标A与本地区公共资源交易平台无论合并建设还是分开建设的,均应当确保相关交易信息数据按照有关规定同步上传至全国公共资源交易平台和中国招标投标公共服务平台。【阅读全文】
cd4 | 2019-01-20 | 阅读(140) | 评论(246)
  (二)制订方案  1.相关职能办公室要根据全县行动方案和部署,编制建设具体实施方案,厘出问题短板,建立问题清单、任务清单、项目清单和责任清单,实行挂图作战,对发现问题逐一销号。【阅读全文】
cn4 | 2019-01-20 | 阅读(730) | 评论(408)
以镇党委、政府名义召开,由相关办公室主办,各村(社区)分管负责人参加的工作会议,与会人数控制在50人以内。【阅读全文】
dfr | 2019-01-20 | 阅读(73) | 评论(472)
跟踪训练4 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;解答解 记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.故所求概率为 离散型随机变量的均值第2章 随机变量的均值和方差学习目标1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.理解离散型随机变量的均值的性质.3.掌握两点分布、二项分布的均值.4.会利用离散型随机变量的均值,反映离散型随机变量的取值水平,解决一些相关的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 离散型随机变量的均值或数学期望设有12个西瓜,其中4个重5kg,3个重6kg,5个重7kg.思考1 任取1个西瓜,用X表示这个西瓜的重量,试问X可以取哪些值?答案答案 X=5,6,7.思考2 当X取上述值时,对应的概率分别是多少?答案思考3 如何求每个西瓜的平均重量?答案(1)数学期望:E(X)=μ=.(2)性质①pi≥0,i=1,2,…,n;②p1+p2+…+pn=1.(3)数学期望的含义:它反映了离散型随机变量取值的.Xx1x2…xnPp1p2…pn离散型随机变量的均值或数学期望一般地,若离散型随机变量X的概率分布如下表:梳理x1p1+x2p2+…+xnpn平均水平知识点二 两点分布、超几何分布、二项分布的均值1.两点分布:若X~0-1分布,则E(X)=.2.超几何分布:若X~H(n,M,N),则E(X)=.3.二项分布:若X~B(n,p),则E(X)=.pnp题型探究命题角度1 一般离散型随机变量的均值例1 某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分,假设这名同学回答正确的概率均为,且各题回答正确与否相互之间没有影响.(1)求这名同学回答这三个问题的总得分X的概率分布和均值;解答类型一 离散型随机变量的均值解 X的可能取值为-300,-100,100,(X=-300)==,P(X=300)==,所以X的概率分布如下表:X-300-所以E(X)=(-300)×+(-100)×+100×+300×=180(分).(2)求这名同学总得分不为负分(即X≥0)的概率.解 这名同学总得分不为负分的概率为P(X≥0)=P(X=100)+P(X=300)=+=解答求随机变量X的均值的方法和步骤(1)理解随机变量X的意义,写出X所有可能的取值.(2)求出X取每个值的概率P(X=k).(3)写出X的分布列.(4)利用均值的定义求E(X).反思与感悟跟踪训练1 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元,20个奖品是25元,5个奖品是100元.在不考虑获利的前提下,一张彩票的合理价格是多少元?解答解 设一张彩票的中奖额为随机变量X,显然X的所有可能取值为0,5,25,100.依题意X的概率分布如下表:=,所以一张彩票的合理价格是元.命题角度2 二项分布与两点分布的均值例2 某运动员投篮命中率为p=(1)求投篮1次命中次数X的均值;解 投篮1次,命中次数X的概率分布如下表:解答则E(X)=(2)求重复5次投篮,命中次数Y的均值.解 由题意知,重复5次投篮,命中次数Y服从二项分布,即Y~B(5,),E(Y)=np=5×=3.解答引申探究在重复5次投篮时,命中次数为Y,随机变量η=5Y+2.求E(η).解 E(η)=E(5Y+2)=5E(Y)+2=5×3+2=17.解答(1)常见的两种分布的均值设p为一次试验中成功的概率,则①两点分布E(X)=p;②二项分布E(X)=np.熟练应用上述两公式可大大减少运算量,提高解题速度.(2)两点分布与二项分布辨析①相同点:一次试验中要么发生要么不发生.②不【阅读全文】
w66利来国际手机app,w66利来国际手机app,w66利来国际手机app,w66利来国际手机app,w66利来国际手机app,w66利来国际手机app
ofx | 2019-01-20 | 阅读(892) | 评论(801)
世纪研究生数学教材系列!同济大学研究生院!十五出版基金资助矩阵分析同济大学应用数学系编著!同济大学出版社目录!!前言!符号表#####################第章基础知识###!!!!#####################矩阵运算###!!!!!!####################线性方程组###!!#$!!#####################相似矩阵###!!%!!!######################正定阵###!!’#(!!#####################矩阵分解###!!#!!!####################广义特征值###!!)%(!!########################习题###!【阅读全文】
3wy | 2019-01-19 | 阅读(931) | 评论(350)
;主体内容。【阅读全文】
l3v | 2019-01-19 | 阅读(879) | 评论(930)
”(《中文大辞典》第15册,第230页)。【阅读全文】
3dp | 2019-01-19 | 阅读(6) | 评论(839)
ThispageintentionallyleftblankRandomGraphDynamicsThetheoryofrandomgraphsbeganinthelate1950sinseveralpapersbyErd¨osandR′,thenotionofsixdegreesofseparation,meaningthatanytwopeopleontheplanetcanbeconnectedbyashortchainofpeoplewhoknoweachother,inspiredStrogatzandWattstodenethesmallworldrandomgraphinwhicheachsiteiscon-nectedtokcloseneighbors,,itwasobservedinhumansocialandsexualnetworksandontheInternetthatthenu′asiandAlberttodenethepreferentialattachmentmodel,,ngplaceonthegraphinadditiontotheirgeometricproperties,,hemovedtoCornell,wherehisresearchturnedtoapplicationsofprobability,rsttoecologyand,morerecently,,sixotherbooks,lBoard:,DepartmentofMathematics,,DepartmentofStatistics,,EpsteinDepartmentofIndustrialSystemsEngi【阅读全文】
v4l | 2019-01-19 | 阅读(426) | 评论(38)
在生物安全实验室中,这些器材和用品主要是保护实验人员免于暴露于生物危害物质(气溶胶、喷溅物以及意外接种等)危险的一种物理屏障。【阅读全文】
uc2 | 2019-01-18 | 阅读(643) | 评论(402)
是一个与积累必要的证据相关的概念,它要求注册会计师通过不断修正的、系统的职业过程,获取充分、适当的证据,对鉴证对象信息整体提出结论,提供一种高水平但并非百分之百的保证。【阅读全文】
suw | 2019-01-18 | 阅读(228) | 评论(390)
跟踪训练4 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;解答解 记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.故所求概率为 离散型随机变量的均值第2章 随机变量的均值和方差学习目标1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.理解离散型随机变量的均值的性质.3.掌握两点分布、二项分布的均值.4.会利用离散型随机变量的均值,反映离散型随机变量的取值水平,解决一些相关的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 离散型随机变量的均值或数学期望设有12个西瓜,其中4个重5kg,3个重6kg,5个重7kg.思考1 任取1个西瓜,用X表示这个西瓜的重量,试问X可以取哪些值?答案答案 X=5,6,7.思考2 当X取上述值时,对应的概率分别是多少?答案思考3 如何求每个西瓜的平均重量?答案(1)数学期望:E(X)=μ=.(2)性质①pi≥0,i=1,2,…,n;②p1+p2+…+pn=1.(3)数学期望的含义:它反映了离散型随机变量取值的.Xx1x2…xnPp1p2…pn离散型随机变量的均值或数学期望一般地,若离散型随机变量X的概率分布如下表:梳理x1p1+x2p2+…+xnpn平均水平知识点二 两点分布、超几何分布、二项分布的均值1.两点分布:若X~0-1分布,则E(X)=.2.超几何分布:若X~H(n,M,N),则E(X)=.3.二项分布:若X~B(n,p),则E(X)=.pnp题型探究命题角度1 一般离散型随机变量的均值例1 某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分,假设这名同学回答正确的概率均为,且各题回答正确与否相互之间没有影响.(1)求这名同学回答这三个问题的总得分X的概率分布和均值;解答类型一 离散型随机变量的均值解 X的可能取值为-300,-100,100,(X=-300)==,P(X=300)==,所以X的概率分布如下表:X-300-所以E(X)=(-300)×+(-100)×+100×+300×=180(分).(2)求这名同学总得分不为负分(即X≥0)的概率.解 这名同学总得分不为负分的概率为P(X≥0)=P(X=100)+P(X=300)=+=解答求随机变量X的均值的方法和步骤(1)理解随机变量X的意义,写出X所有可能的取值.(2)求出X取每个值的概率P(X=k).(3)写出X的分布列.(4)利用均值的定义求E(X).反思与感悟跟踪训练1 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元,20个奖品是25元,5个奖品是100元.在不考虑获利的前提下,一张彩票的合理价格是多少元?解答解 设一张彩票的中奖额为随机变量X,显然X的所有可能取值为0,5,25,100.依题意X的概率分布如下表:=,所以一张彩票的合理价格是元.命题角度2 二项分布与两点分布的均值例2 某运动员投篮命中率为p=(1)求投篮1次命中次数X的均值;解 投篮1次,命中次数X的概率分布如下表:解答则E(X)=(2)求重复5次投篮,命中次数Y的均值.解 由题意知,重复5次投篮,命中次数Y服从二项分布,即Y~B(5,),E(Y)=np=5×=3.解答引申探究在重复5次投篮时,命中次数为Y,随机变量η=5Y+2.求E(η).解 E(η)=E(5Y+2)=5E(Y)+2=5×3+2=17.解答(1)常见的两种分布的均值设p为一次试验中成功的概率,则①两点分布E(X)=p;②二项分布E(X)=np.熟练应用上述两公式可大大减少运算量,提高解题速度.(2)两点分布与二项分布辨析①相同点:一次试验中要么发生要么不发生.②不【阅读全文】
共5页

友情链接,当前时间:2019-01-21

w66利来娱乐 w66利来娱乐公司 利来网上娱乐 利来国际旗舰版 老牌利来
利来国际ag旗舰厅app 利来国际AG旗舰店 利来国际w66手机网页 w66.利来国际
利来国际w66备用 利来国际w66.com 利来娱乐网 w66利来娱乐公司 利来娱乐网
利来娱乐城 利来娱乐国际最给利老牌网站是什么 利来国际app旗舰厅 利来国际旗舰版 利来国际最老牌
扎兰屯市| 崇左市| 五原县| 黄平县| 乌什县| 杂多县| 文昌市| 东城区| 九龙县| 阜南县| 甘谷县| 上高县| 江达县| 无为县| 新津县| 元阳县| 云阳县| 普宁市| 长阳| 正定县| 玉树县| 临沧市| 巫溪县| 曲水县| 连江县| 吉隆县| 五家渠市| 韶关市| 读书| 巴彦淖尔市| 花莲市| 阿尔山市| 义马市| 仙居县| 东乡族自治县| 友谊县| 左权县| 庆阳市| 龙岩市| 柯坪县| 星座| http://m.17837007.cn http://m.57020408.cn http://m.40032108.cn http://m.80799570.cn http://m.91629634.cn http://m.05787168.cn